If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2=750
We move all terms to the left:
2.5x^2-(750)=0
a = 2.5; b = 0; c = -750;
Δ = b2-4ac
Δ = 02-4·2.5·(-750)
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{3}}{2*2.5}=\frac{0-50\sqrt{3}}{5} =-\frac{50\sqrt{3}}{5} =-10\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{3}}{2*2.5}=\frac{0+50\sqrt{3}}{5} =\frac{50\sqrt{3}}{5} =10\sqrt{3} $
| 17=5(x+7) | | 12=5(x-3) | | 5x+8+6x+8=82,x | | 45=(x-2)(x-14)17=x^2-16x45=x^2-10x+28-28 | | 5x+8+6x+8=82,x | | 5x+8+6x+8=82,x | | 45=(x-2)(x-14)17=x^2-16x45=x^2-10x+28-28 | | -5x+2=9x | | 10x+9=6x+8 | | -x/2+5=-x/2 | | -x/2+5=-x/2 | | 56=-78.9-p | | 100-4q=40+2q | | 8p=24 | | 8p=24 | | 2(x-6)+2x=4(x+7)-40 | | 2(x=8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 | | 2(x+8)=126 |